最新試題
某中學(xué)的初一年級有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來描述,現(xiàn)在按能力將他們分成A,B,C,D四個(gè)組參加一項(xiàng)測試,求各組的人數(shù)。
預(yù)測最低錄取分?jǐn)?shù)線。
某尋呼臺(tái)在1分鐘內(nèi)接到的呼喚次數(shù)服從參數(shù)λ=5的泊松分布,求在1分鐘內(nèi)接到6次呼喚的概率及接到呼喚不超過10次的概率。
對圓的直徑作近似測量,其值均勻分布在區(qū)間[a,b]上,求圓的面積的數(shù)學(xué)期望。
設(shè)隨機(jī)變量的概率密度為,求E(X)和D(X)。
某電視臺(tái)廣告部稱某類企業(yè)在該臺(tái)黃金時(shí)段播放廣告后平均受益(平均利潤增加量)至少為15萬元,設(shè)廣告播出后的受益近似地服從正態(tài)分布,現(xiàn)隨機(jī)抽樣20個(gè),平均受益13.2萬元,標(biāo)準(zhǔn)差3.4萬元。試在α=0.05的水平下判斷該廣告部的說法是否正確?
為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?
求矩陣的逆矩陣。
設(shè)隨機(jī)變量X服從參數(shù)λ=1的指數(shù)分布,求E(3X-2)和D(3X-2)。
求矩陣的逆矩陣: