問答題某電視臺廣告部稱某類企業(yè)在該臺黃金時段播放廣告后平均受益(平均利潤增加量)至少為15萬元,設廣告播出后的受益近似地服從正態(tài)分布,現(xiàn)隨機抽樣20個,平均受益13.2萬元,標準差3.4萬元。試在α=0.05的水平下判斷該廣告部的說法是否正確?

您可能感興趣的試卷

最新試題

求矩陣的逆矩陣:。

題型:問答題

若按總分從高到低錄取,試分析一總分為237分的考生被錄取為正式工的可能性。

題型:問答題

樣本值:54,67,68,78,70,66,67,70,65,69,分別計算樣本平均值和樣本方差。

題型:問答題

某學校600名學生參加計算機應用課程考試的成績近似地服從N(75,82)試估計成績在[90,100],[70,80),[0,60)分數(shù)段內(nèi)的人數(shù)。

題型:問答題

取自某校畢業(yè)生的一個100人的簡單隨機樣本,有48人年收入不少于3萬元,估計該校畢業(yè)生中年收入不少于3萬元的所有畢業(yè)生的百分比。

題型:問答題

求矩陣的逆矩陣。

題型:問答題

某市一次全.市初三英語會考的考試成績可以用正態(tài)分布來描述,其平均成績?yōu)棣?70(分),標準差為σ=9(分)。一考生考得75分,求其超前百分位數(shù)。

題型:問答題

甲乙兩臺機床生產(chǎn)同一種零件,在全面質(zhì)量考核中,統(tǒng)計出甲乙機床每天出現(xiàn)次品數(shù)ξ、η的分布列分別為,如果兩臺機床的產(chǎn)量相同,試比較它們的生產(chǎn)質(zhì)量。

題型:問答題

設X~U[0,λ],X1,X2,…,Xn是取自X的一個樣本,求的矩法估計。

題型:問答題

設燈泡使用時數(shù)X~N(μ,σ2),為了估計期望μ和方差σ2,共測試了10個燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。

題型:問答題