A.損失函數(shù)是對(duì)每個(gè)輸入的預(yù)測(cè)值與真實(shí)值的差異計(jì)算總和
B.透過(guò)梯度下降一定可以找到降低損失函數(shù)的最佳解
C.損失函數(shù)的變量是可以調(diào)整的參數(shù)
D.訓(xùn)練神經(jīng)網(wǎng)絡(luò)是透過(guò)參數(shù)的調(diào)整來(lái)降低損失函數(shù)
E.梯度下降是降低損失函數(shù)的一種算法
您可能感興趣的試卷
你可能感興趣的試題
A.傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)是指全鏈接神經(jīng)網(wǎng)絡(luò)
B.全鏈接神經(jīng)網(wǎng)絡(luò)也叫標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)
C.標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)通常稱為NN(neuralnetwork)
D.全鏈接神經(jīng)網(wǎng)絡(luò)的每個(gè)神經(jīng)元都會(huì)跟前后層的神經(jīng)元相連
E.每個(gè)神經(jīng)元內(nèi)部的計(jì)算架構(gòu)都不一樣
A.建構(gòu)神經(jīng)網(wǎng)絡(luò)時(shí)需要知道最終的函數(shù)學(xué)習(xí)機(jī)長(zhǎng)什么樣子
B.打造一個(gè)神經(jīng)網(wǎng)絡(luò)的函數(shù)學(xué)習(xí)機(jī)是透過(guò)編程來(lái)達(dá)成
C.神經(jīng)網(wǎng)絡(luò)模型可分成輸入層、表現(xiàn)層及輸出層
D.神經(jīng)網(wǎng)絡(luò)模型可分成輸入層、隱藏層及輸出層
E.神經(jīng)網(wǎng)絡(luò)模型可分成輸入層、激發(fā)層及輸出層
A.判定樹(shù)可以是多元樹(shù)
B.判定樹(shù)的起始點(diǎn)稱為根節(jié)點(diǎn)
C.判定樹(shù)是一種分群的機(jī)器學(xué)習(xí)技術(shù)
D.判定樹(shù)上的內(nèi)部節(jié)點(diǎn)代表一個(gè)特征值
E.判定樹(shù)上的樹(shù)葉就是代表一種分類結(jié)果
A.支持向量機(jī)的分類函數(shù)稱為核函數(shù)(kernelfunction)
B.核函數(shù)(kernelfunction)都是非線性的
C.核函數(shù)可以多項(xiàng)式核函數(shù)及徑向基核函數(shù)
D.利用核函數(shù)的變化,可以將原先在低維度空間無(wú)法分類的問(wèn)題轉(zhuǎn)到高維度空間達(dá)以達(dá)成需要的分類效果
E.支持向量機(jī)可以透過(guò)核函數(shù)的轉(zhuǎn)換,簡(jiǎn)化分類的困難度
A.分群?jiǎn)栴}被定義為:將未知的新訊息歸納進(jìn)已知的信息中
B.機(jī)器學(xué)習(xí)領(lǐng)域中的分群?jiǎn)栴},重點(diǎn)在于新的數(shù)據(jù)和已分類的數(shù)據(jù)互相比較,看看新數(shù)據(jù)在分類過(guò)的數(shù)據(jù)中,和哪一類數(shù)據(jù)比較類似
C.分類問(wèn)題就是一群數(shù)據(jù)中沒(méi)有明確的分類或群體,而是必須透過(guò)它們所具有的特
D.分群的問(wèn)題要事先幫數(shù)據(jù)做卷標(biāo)(label)
E.分群的基礎(chǔ)在于要根據(jù)可以區(qū)分出兩種群體的特征來(lái)分群
最新試題
人工智能中的“序列到序列”模型主要用于處理什么類型的數(shù)據(jù)()?
根據(jù)新數(shù)據(jù)集的大小和數(shù)據(jù)集的相似程度,下列選項(xiàng)不屬于遷移學(xué)習(xí)方法情況的是的是()。
在神經(jīng)網(wǎng)絡(luò)中,激活函數(shù)ReLU 的特點(diǎn)是什么()?
度量泛化能力的好壞,最直觀的表現(xiàn)就是模型的()。
在深度學(xué)習(xí)模型中,用于提高模型訓(xùn)練穩(wěn)定性的技術(shù)是:()。
屬性值約束主要有()。
在深度學(xué)習(xí)模型訓(xùn)練中,"早停法"(EarlyStopping)策略的應(yīng)用目的是什么()?
模型微調(diào)中的提示學(xué)習(xí)是指:()。
進(jìn)行模型訓(xùn)練之前,需要先把標(biāo)注好的數(shù)據(jù)進(jìn)行分類。訓(xùn)練有監(jiān)督學(xué)習(xí)模型時(shí)會(huì)將數(shù)據(jù)集劃分為()。
在自然語(yǔ)言處理中,哪些方法可以用于提升文本分類、情感分析和實(shí)體識(shí)別的準(zhǔn)確性()?