試用二分法求解非線(xiàn)性超越方程:在區(qū)間(0,1)之間的根,使得誤差不超過(guò)1/25。
您可能感興趣的試卷
最新試題
試求出如下m階三對(duì)角矩陣A的逆矩陣A-1的特征值,進(jìn)而求出譜半徑ρ(A-1);;取階數(shù)m=10,參數(shù)分別取為a=1/4,1/2,3/4。
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤1的Euler格式和改進(jìn)Euler格式;取步長(zhǎng)h=0.02,計(jì)算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。
試以Givens平面旋轉(zhuǎn)變換求出Hessenberg矩陣的QR分解。
用隱式單步法格式求解常微分方程初值問(wèn)題,y(0)=1。其中斜率,試確定其絕對(duì)穩(wěn)定區(qū)間。
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計(jì)算出3個(gè)啟動(dòng)值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長(zhǎng)h=0.1,手工計(jì)算到x=0.5
寫(xiě)出求解常微分方程初值問(wèn)題,y(1)=2,1≤x≤2的梯形格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=1.2。
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=0,0≤x≤4的Euler格式;取步長(zhǎng)h=0.1,手工計(jì)算到x=0.1,精確解為。
寫(xiě)出求解常微分方程初值問(wèn)題,y(0)=1,0≤x≤0.6的Euler格式;取步長(zhǎng)h=0.2,手工計(jì)算到x=0.2。
常微分方程y″+16*y′+15*y=sin(2t+1),y(0)=α,y′(0)=β為()方程組。
試以帶原點(diǎn)位移的QR分解方法求出矩陣的全部特征值。