您可能感興趣的試卷
最新試題
設(shè)隨機(jī)變量的概率密度為,求E(X)和D(X)。
某學(xué)校600名學(xué)生參加計(jì)算機(jī)應(yīng)用課程考試的成績近似地服從N(75,82)試估計(jì)成績在[90,100],[70,80),[0,60)分?jǐn)?shù)段內(nèi)的人數(shù)。
某車間有400臺同類型機(jī)器,工作相互獨(dú)立,每臺機(jī)器需要的電功率為θ瓦,由于工藝關(guān)系,每臺機(jī)器開動(dòng)時(shí)間占工作總時(shí)間的3/4,問應(yīng)該供應(yīng)多少瓦電力才能以99%的概率保證車間有足夠的電功率?
已知離散隨機(jī)變量X的分布列為,求E(X2),E(X-1)
設(shè)隨機(jī)變量ξ的分布密度為p(x)=ce-x,-∞<x<+∞,求常數(shù)c,E(ξ),D(ξ)和P(-1<ξ<1)。
已知A=,B=(1 0 1),求AB,BA,和(AB)4
設(shè)X~U(a,b),求D(X)。
求矩陣的逆矩陣:。
為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺,各臺工作相互獨(dú)立,每臺發(fā)生故障的概率都是0.01,在正常情況下,一臺設(shè)備出故障時(shí)一人即能處理,問至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?
甲乙兩人五門課程的測驗(yàn)成績(每門課程滿分均為100分)為又經(jīng)統(tǒng)計(jì),該年級五門課程這次測驗(yàn)的平均分?jǐn)?shù)分別為70分、85分、65分、75分、68分,標(biāo)準(zhǔn)差分別為9分、6分、11分、8分、10分,試運(yùn)用標(biāo)準(zhǔn)分?jǐn)?shù)來比較甲乙這次測驗(yàn)總分的前后順序。