A.數(shù)據(jù)壓縮
B.數(shù)據(jù)概化
C.維歸約
D.規(guī)范化
您可能感興趣的試卷
你可能感興趣的試題
A.設(shè)備異常
B.命名規(guī)則的不一致
C.與其他已有數(shù)據(jù)不一致而被刪除
D.在輸入時,有些數(shù)據(jù)因?yàn)榈貌坏街匾暥鴽]有被輸入
A.數(shù)據(jù)中的空缺值
B.噪聲數(shù)據(jù)
C.數(shù)據(jù)中的不一致性
D.數(shù)據(jù)中的概念分層
A.平滑
B.聚集
C.數(shù)據(jù)概化
D.規(guī)范化
A.數(shù)據(jù)清理
B.數(shù)據(jù)集成
C.數(shù)據(jù)變換
D.數(shù)據(jù)歸約
A.去掉數(shù)據(jù)中的噪聲
B.對數(shù)據(jù)進(jìn)行匯總和聚集
C.使用概念分層,用高層次概念替換低層次“原始”數(shù)據(jù)
D.將屬性按比例縮放,使之落入一個小的特定區(qū)間
最新試題
由于分類是回歸的一種特殊情況,因此邏輯回歸是線性回歸的一種特殊情況。
經(jīng)常跟管理層打交道并進(jìn)行有效地關(guān)于商業(yè)領(lǐng)域的討論有助于數(shù)據(jù)科學(xué)項(xiàng)目的成功。
給定用于2類分類問題的線性可分離數(shù)據(jù)集,線性SVM優(yōu)于感知器,因?yàn)镾VM通常能夠在訓(xùn)練集上實(shí)現(xiàn)更好的分類精度。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
隨機(jī)梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
由于決策樹學(xué)會了對離散值輸出而不是實(shí)值函數(shù)進(jìn)行分類,因此它們不可能過度擬合。
當(dāng)MAP中使用的先驗(yàn)是參數(shù)空間上的統(tǒng)一先驗(yàn)時,MAP估計等于ML估計。
如果P(A B)= P(A),則P(A∩B)= P(A)P(B)。
完整性,一致性,時效性,唯一性,有效性,準(zhǔn)確性是衡量數(shù)據(jù)質(zhì)量的六個維度指標(biāo)。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個角度來設(shè)計和實(shí)現(xiàn)的。