A.高維性
B.規(guī)模
C.稀疏性
D.噪聲和離群點
您可能感興趣的試卷
你可能感興趣的試題
A.精度
B.Rand統(tǒng)計量
C.Jaccard系數(shù)
D.召回率
A.輪廓系數(shù)
B.共性分類相關(guān)系數(shù)
C.熵
D.F度量
A.規(guī)則集的表達能力遠不如決策樹好
B.基于規(guī)則的分類器都對屬性空間進行直線劃分,并將類指派到每個劃分
C.無法被用來產(chǎn)生更易于解釋的描述性模型
D.非常適合處理類分布不平衡的數(shù)據(jù)集
A.構(gòu)造網(wǎng)絡(luò)費時費力
B.對模型的過分問題非常魯棒
C.貝葉斯網(wǎng)絡(luò)不適合處理不完整的數(shù)據(jù)
D.網(wǎng)絡(luò)結(jié)構(gòu)確定后,添加變量相當(dāng)麻煩
A.F1度量
B.召回率(recall)
C.精度(precision)
D.真正率(ture positive rate,TPR)
最新試題
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時,我們幾乎總是可以通過允許更多隱藏狀態(tài)來增加訓(xùn)練數(shù)據(jù)的可能性。
最大似然估計的一個缺點是,在某些情況下(例如,多項式分布),它可能會返回零的概率估計。
公司內(nèi)部收集的數(shù)據(jù)不存在需要考慮數(shù)據(jù)隱私的環(huán)節(jié)。
數(shù)據(jù)復(fù)制或者備份均是為了從提高數(shù)據(jù)并發(fā)這個角度來設(shè)計和實現(xiàn)的。
選擇用于k均值聚類的聚類數(shù)k的一種好方法是嘗試k的多個值,并選擇最小化失真度量的值。
當(dāng)數(shù)據(jù)集標(biāo)簽錯誤的數(shù)據(jù)點時,隨機森林通常比AdaBoost更好。
數(shù)據(jù)索引就像給每條數(shù)據(jù)裝了個信箱。
數(shù)據(jù)壓縮與解壓縮可以使得數(shù)據(jù)處理的速度加快。
隨機梯度下降每次更新執(zhí)行的計算量少于批梯度下降。
使決策樹更深將確保更好的擬合度,但會降低魯棒性。