A.頻繁子集挖掘
B.頻繁子圖挖掘
C.頻繁數(shù)據(jù)項(xiàng)挖掘
D.頻繁模式挖掘
您可能感興趣的試卷
你可能感興趣的試題
A.s=<{2,4},{3,5,6},{8}>,t=<{2},{3,6},{8}>
B.s=<{2,4},{3,5,6},{8}>,t=<{2},{8}>
C.s=<{1,2},{3,4}>,t=<{1},{2}>
D.s=<{2,4},{2,4}>,t=<{2},{4}>
A.1,2,3,4
B.1,2,3,5
C.1,2,4,5
D.1,3,4,5
A.無(wú)向無(wú)環(huán)
B.有向無(wú)環(huán)
C.有向有環(huán)
D.無(wú)向有環(huán)
A.OLAP和OLAM都基于客戶機(jī)/服務(wù)器模式,只有后者有與用戶的交互性
B.由于OLAM的立方體和用于OLAP的立方體有本質(zhì)的區(qū)別
C.基于WEB的OLAM是WEB技術(shù)與OLAM技術(shù)的結(jié)合
D.OLAM服務(wù)器通過(guò)用戶圖形借口接收用戶的分析指令,在元數(shù)據(jù)的知道下,對(duì)超級(jí)立方體作一定的操作
關(guān)于OLAP的特性,下面正確的是:()。
(1)快速性
(2)可分析性
(3)多維性
(4)信息性
(5)共享性
A.(1)(2)(3)
B.(2)(3)(4)
C.(1)(2)(3)(4)
D.(1)(2)(3)(4)(5)
最新試題
任務(wù)調(diào)度系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)才能使得數(shù)據(jù)收集工作可以不間斷地按照既定的目標(biāo)從目標(biāo)源獲取數(shù)據(jù)。
使決策樹更深將確保更好的擬合度,但會(huì)降低魯棒性。
訓(xùn)練神經(jīng)網(wǎng)絡(luò)具有過(guò)度擬合訓(xùn)練數(shù)據(jù)的潛在問(wèn)題。
當(dāng)數(shù)據(jù)集標(biāo)簽錯(cuò)誤的數(shù)據(jù)點(diǎn)時(shí),隨機(jī)森林通常比AdaBoost更好。
數(shù)據(jù)索引是保證數(shù)據(jù)處理高性能的軟件角度的一種手段,不做數(shù)據(jù)索引的數(shù)據(jù)訪問(wèn)是線性訪問(wèn),但是做了索引的數(shù)據(jù)訪問(wèn)會(huì)成倍的降低訪問(wèn)時(shí)間。
無(wú)論質(zhì)心的初始化如何,K-Means始終會(huì)給出相同的結(jié)果。
使用正則表達(dá)式可以找到一個(gè)文本文件中所有可能出現(xiàn)的手機(jī)號(hào)碼。
支持向量機(jī)不適合大規(guī)模數(shù)據(jù)。
非結(jié)構(gòu)化數(shù)據(jù)也可以使用關(guān)系型數(shù)據(jù)庫(kù)來(lái)存儲(chǔ)。
通常,當(dāng)試圖從大量觀察中學(xué)習(xí)具有少量狀態(tài)的HMM時(shí),我們幾乎總是可以通過(guò)允許更多隱藏狀態(tài)來(lái)增加訓(xùn)練數(shù)據(jù)的可能性。