問答題采用中間再熱循環(huán)的目的是什么?

您可能感興趣的試卷

最新試題

一定量的某種理想氣體,開始時處于壓強、體積、溫度分別為p0=1.2×106Pa,V0=8.31×10-3m3,T0=300K的初態(tài),后經(jīng)過一等體過程,溫度升高到T1=450K,再經(jīng)過一等溫過程,壓強降到p=p0的末態(tài)。已知該理想氣體的等壓摩爾熱容與等體摩爾熱容之比Cp/CV=5/3。求:(1) 該理想氣體的等壓摩爾熱容Cp和等體摩爾熱容CV。(2) 氣體從始態(tài)變到末態(tài)的全過程中從外界吸收的熱量。(普適氣體常量R=8.31 J·mol-1·K-1)

題型:問答題

比熱容比=1.40的理想氣體進行如圖所示的循環(huán).已知狀態(tài)A的溫度為300K.求:(1) 狀態(tài)B、C的溫度;(2) 每一過程中氣體所吸收的凈熱量. (普適氣體常量R=8.31J·mol-1·K-1)

題型:問答題

一氣缸內(nèi)盛有一定量的單原子理想氣體.若絕熱壓縮使其體積減半,問氣體分子的平均速率為原來的幾倍?

題型:問答題

2mol氫氣(視為理想氣體)開始時處于標準狀態(tài),后經(jīng)等溫過程從外界吸取了400J的熱量,達到末態(tài).求末態(tài)的壓強.                   (普適氣體常量R=8.31J·mol-2·K-1)

題型:問答題

一定量的理想氣體在標準狀態(tài)下體積為 1.0×102m3,求下列過程中氣體吸收的熱量: (1) 等溫膨脹到體積為 2.0×102m3;                             (2) 先等體冷卻,再等壓膨脹到(1)中所到達的終態(tài).已知1atm= 1.013×105 Pa,并設(shè)氣體的CV= 5R/2.

題型:問答題

卡諾循環(huán)熱效率表達式說明了什么重要問題?

題型:問答題

將1mol理想氣體等壓加熱,使其溫度升高72K,傳給它的熱量等于1.60×103J,求:(1)氣體所作的功W;(2)氣體內(nèi)能的增量△E;(3)比熱容比。(普適氣體常量R=8.31J.mol-1.K-1)

題型:問答題

0.02 kg的氦氣(視為理想氣體),溫度由17℃升為27℃.若在升溫過程中,(1) 體積保持不變;(2) 壓強保持不變;(3) 不與外界交換熱量;試分別求出氣體內(nèi)能的改變、吸收的熱量、外界對氣體所作的功. (普適氣體常量R =8.31J.mol-1.K-1)

題型:問答題

闡述角系數(shù)的定義及其特性?

題型:問答題

一定量的單原子分子理想氣體,從初態(tài)A出發(fā),沿圖示直線過程變到另一狀態(tài)B,又經(jīng)過等容、等壓兩過程回到狀態(tài)A.                       (1) 求A→B,B→C,C→A各過程中系統(tǒng)對外所作的功W,內(nèi)能的增量E以及所吸收的熱量Q.              (2) 整個循環(huán)過程中系統(tǒng)對外所作的總功以及從外界吸收的總熱量(過程吸熱的代數(shù)和).

題型:問答題