您可能感興趣的試卷
你可能感興趣的試題
最新試題
一定量的氦氣(理想氣體),原來的壓強(qiáng)為p1=1atm,溫度為T1= 300K,若經(jīng)過一絕熱過程,使其壓強(qiáng)增加到p2= 32atm.求: (1) 末態(tài)時(shí)氣體的溫度T2. (2) 末態(tài)時(shí)氣體分子數(shù)密度n. (玻爾茲曼常量 k =1.38×10-23 J·K-1,1atm=1.013×105Pa )
一定量的理想氣體在標(biāo)準(zhǔn)狀態(tài)下體積為 1.0×102m3,求下列過程中氣體吸收的熱量: (1) 等溫膨脹到體積為 2.0×102m3; (2) 先等體冷卻,再等壓膨脹到(1)中所到達(dá)的終態(tài).已知1atm= 1.013×105 Pa,并設(shè)氣體的CV= 5R/2.
如果一定量的理想氣體,其體積和壓強(qiáng)依照的規(guī)律變化,其中a為已知常量.試求: (1) 氣體從體積V1膨脹到V2所作的功; (2) 氣體體積為V1時(shí)的溫度T1與體積為V2時(shí)的溫度T2之比.
一定量的某種理想氣體,開始時(shí)處于壓強(qiáng)、體積、溫度分別為p0=1.2×106Pa,V0=8.31×10-3m3,T0=300K的初態(tài),后經(jīng)過一等體過程,溫度升高到T1=450K,再經(jīng)過一等溫過程,壓強(qiáng)降到p=p0的末態(tài)。已知該理想氣體的等壓摩爾熱容與等體摩爾熱容之比Cp/CV=5/3。求:(1) 該理想氣體的等壓摩爾熱容Cp和等體摩爾熱容CV。(2) 氣體從始態(tài)變到末態(tài)的全過程中從外界吸收的熱量。(普適氣體常量R=8.31 J·mol-1·K-1)
如圖所示,AB、DC是絕熱過程,CEA是等溫過程,BED是任意過程,組成一個(gè)循環(huán)。若圖中EDCE所包圍的面積為70 J,EABE所包圍的面積為30 J,過程中系統(tǒng)放熱100 J,求BED過程中系統(tǒng)吸熱為多少?
在平壁和圓筒壁的外層增加一層保溫材料,是否一定減少散熱損失,為什么?
卡諾循環(huán)熱效率表達(dá)式說明了什么重要問題?
簡述開口系統(tǒng)、封閉系統(tǒng)、絕熱系統(tǒng)和孤立系統(tǒng)各有什么特點(diǎn)?
0.02 kg的氦氣(視為理想氣體),溫度由17℃升為27℃.若在升溫過程中,(1) 體積保持不變;(2) 壓強(qiáng)保持不變;(3) 不與外界交換熱量;試分別求出氣體內(nèi)能的改變、吸收的熱量、外界對氣體所作的功. (普適氣體常量R =8.31J.mol-1.K-1)
一定量的理想氣體,由狀態(tài)a經(jīng)b到達(dá)c.(如圖,abc為一直線)求此過程中(1) 氣體對外作的功; (2) 氣體內(nèi)能的增量; (3) 氣體吸收的熱量.(1atm=1.013×105Pa)