問(wèn)答題設(shè)A是n階方陣,B為n×s矩陣,且秩(B)=n,證明:若AB=O,則A=O。
您可能感興趣的試卷
你可能感興趣的試題
4.單項(xiàng)選擇題
設(shè)ξ1,ξ2,ξ3是齊次線性方程組AX=O的一個(gè)基礎(chǔ)解系,則該方程的基礎(chǔ)解系還有()。
A.A
B.B
C.C
D.D
5.問(wèn)答題
設(shè)A=,且AB=AT+B,求矩陣B。
最新試題
如果A2-6A=E,則A-1=()
題型:?jiǎn)雾?xiàng)選擇題
若矩陣A=的秩r(A)=2,則t=() 。
題型:填空題
設(shè)A為n階實(shí)對(duì)稱(chēng)矩陣,C是n階是可逆矩陣,且B=CTAC,則()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A為3階矩陣,丨A丨=1/2,求丨A*丨=()
題型:?jiǎn)雾?xiàng)選擇題
試問(wèn)a為何值時(shí),向量組α=(1,0,-1,2),β=(0,2,a,3),γ=(-1,a,a+1,a-2)線性相關(guān)。
題型:?jiǎn)柎痤}
關(guān)于初等矩陣下列結(jié)論成立的是()
題型:?jiǎn)雾?xiàng)選擇題
設(shè)A為四階方陣,且滿足秩r(A)+秩r(A·E)=4,則A2=()。
題型:填空題
已知向量組α1=(1,1,1),α2=(2,2,2),α3=(3,3,3),α4=(0,0,1),α5=(1,2,3)。(1)求該向量組的秩;(2)求該向量組的一個(gè)極大線性無(wú)關(guān)組。
題型:?jiǎn)柎痤}
設(shè)A=,B=,C=,求解矩陣方程(A+2E)X=C。
題型:?jiǎn)柎痤}
設(shè)A為3階實(shí)對(duì)稱(chēng)矩陣,向量ξ1=(1,2,5)T,ξ2=(k,2k,3)T分別對(duì)應(yīng)于特征值2和3的特征向量,則k=()。
題型:填空題