設(shè)X1,X2,…,Xn是總體X的一個(gè)樣本,試證和都是總體均值的無(wú)偏估計(jì),并判斷哪一個(gè)比較有效。
您可能感興趣的試卷
你可能感興趣的試題
最新試題
甲乙兩人五門(mén)課程的測(cè)驗(yàn)成績(jī)(每門(mén)課程滿(mǎn)分均為100分)為又經(jīng)統(tǒng)計(jì),該年級(jí)五門(mén)課程這次測(cè)驗(yàn)的平均分?jǐn)?shù)分別為70分、85分、65分、75分、68分,標(biāo)準(zhǔn)差分別為9分、6分、11分、8分、10分,試運(yùn)用標(biāo)準(zhǔn)分?jǐn)?shù)來(lái)比較甲乙這次測(cè)驗(yàn)總分的前后順序。
已知,求A+B,A-B,2A-B,AC,CA,ACB,AB′。
設(shè)X~U[0,λ],X1,X2,…,Xn是取自X的一個(gè)樣本,求的矩法估計(jì)。
設(shè)X~U(a,b),求D(X)。
求矩陣的逆矩陣:
為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類(lèi)型設(shè)備100臺(tái),各臺(tái)工作相互獨(dú)立,每臺(tái)發(fā)生故障的概率都是0.01,在正常情況下,一臺(tái)設(shè)備出故障時(shí)一人即能處理,問(wèn)至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時(shí)不致因維修工人不足不能及時(shí)處理故障而影響生產(chǎn)?
某市一次全.市初三英語(yǔ)會(huì)考的考試成績(jī)可以用正態(tài)分布來(lái)描述,其平均成績(jī)?yōu)棣?70(分),標(biāo)準(zhǔn)差為σ=9(分)。一考生考得75分,求其超前百分位數(shù)。
某機(jī)構(gòu)調(diào)查吸煙者月均抽煙支出,假定支出近似服從正態(tài)分布,現(xiàn)隨機(jī)抽取26人,支出均值為80元,標(biāo)準(zhǔn)差為20元,試估計(jì)全部吸煙者抽煙月均支出的0.95置信區(qū)間。
某車(chē)間有200臺(tái)機(jī)床獨(dú)立工作,每臺(tái)機(jī)床在工作時(shí)間內(nèi)有70%的時(shí)間開(kāi)動(dòng),每臺(tái)機(jī)床工作時(shí)需耗電1kw,問(wèn)應(yīng)供應(yīng)多少電力才能有99.9%的把握保證該車(chē)間正常生產(chǎn)。
樣本值:54,67,68,78,70,66,67,70,65,69,分別計(jì)算樣本平均值和樣本方差。