A.等價
B.相似
C.合同
D.正交
您可能感興趣的試卷
你可能感興趣的試題
設則必有()。
A.AP1P2=B
B.AP2P1=B
C.P1P2A=B
D.P2P1A=B
A.算法初步
B.基本初等函數(shù)Ⅱ(三角函數(shù))
C.平面上的向量
D.三角恒等變換
數(shù)列極限()。
A.A
B.B
C.C
D.D
袋中有5個黑球,3個白球,大小相同,一次隨機地摸出4個球,其中恰有3個白球的概率為()。
A.A
B.B
C.C
D.D
A.14
B.15
C.16
D.17
最新試題
為什么在數(shù)學教學中要貫徹理論與實際相結(jié)合的原則?
高中"隨機抽樣"設定的教學目標如下:①通過對具體的案例分析,逐步學會從現(xiàn)實生活中提出具有一定價值的統(tǒng)計問題;②結(jié)合具體的實際問題情境,理解隨機抽樣的必要性和重要性;③以問題鏈的形式深刻理解樣本的代表性。完成下列任務:(1)根據(jù)教學目標①,設計至少兩個問題,并說明設計意圖;(2)根據(jù)教學目標②,給出至少兩個實例,并說明設計意圖;(3)根據(jù)教學目標③,設計問題鏈(至少包含兩個問題),并說明設計意圖;(4)相對義務教育階段的統(tǒng)計教學,本節(jié)課的教學重點是什么?(5)作為高中階段的起始課,其難點是什么?(6)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?
甲、乙兩人參加某電視臺舉辦的答題闖關(guān)游戲,按照規(guī)則,甲先從6道備選題中一次性抽取3道題獨立作答,然后由乙回答剩余3道題,每人答對其中2道題就停止作答,即闖關(guān)成功,已知在6道備選題中,甲能答對其中的4道題,乙答對每道題的概率都是。(1)求甲、乙至少有一人闖關(guān)成功的概率;(2)設甲答對題目的個數(shù)為ξ,求ξ的分布列及數(shù)學期望。
設二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當x∈(0,x1)時,證明x;(2)設函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。
請以"三角函數(shù)的積化和差與和差化積"為課題,完成下列教學設計。(1)教學目標;(2)教學重點、難點;(3)教學過程(只要求寫出新課導入和新知探究、鞏固、應用等)及設計意圖。
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系。已知點A的極坐標為,直線l的極坐標方程為,且點A在直線l上。(1)求α的值及直線ι的直角坐標方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
高中"方程的根與函數(shù)的零點"(第一節(jié)課)設定的教學目標如下:①通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應方程實數(shù)根之間的關(guān)系,②理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。③通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學生理解動與靜的辨證關(guān)系。掌握函數(shù)零點存在性的判斷。完成下列任務:(1)根據(jù)教學目標,設計一個問題引入,并說明設計意圖;(2)根據(jù)教學目標①,設計問題鏈(至少包含三個問題),并說明設計意圖;(3)根據(jù)教學目標③,給出至少一個實例和三個問題,并說明設計意圖;(4)確定本節(jié)課的教學重點;(5)作為高中階段的基礎(chǔ)內(nèi)容,其難點是什么?(6)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?
在高中數(shù)學課程中為什么要講微積分初步?
高中"等差數(shù)列"設定的教學目標如下:①通過實例,理解等差數(shù)列的概念,探索并掌握等差數(shù)列的通項公式;②能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的等差關(guān)系并能用有關(guān)知識解決相應的問題,體會等差數(shù)列與一次函數(shù)的關(guān)系:③讓學生對日常生活中的實際問題進行分析,引導學生通過觀察,推導,歸納抽象出等差數(shù)列的概念:由學生建立等差數(shù)列模型用相關(guān)知識解決一些簡單的問題,進行等差數(shù)列通項公式應用的實踐操作并在操作過程中,通過類比函數(shù)概念、性質(zhì)、表達式得到對等差數(shù)列相應問題的研究。完成下列任務:(1)根據(jù)教學目標①,給出至少三個實例,并說明設計意圖;(2)根據(jù)教學目標②,設計至少兩個問題,讓學生用等差數(shù)列求解,并說明設計意圖;(3)確定本節(jié)課的教學重點;(4)作為高中階段的重點內(nèi)容,其難點是什么?(5)本節(jié)課的教學內(nèi)容對后續(xù)哪些內(nèi)容的學習有直接影響?
已知數(shù)列{an}中,a1=1,且(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列{an}的通項公式。