求過點(1,2,1)而與兩直線和,平行的平面的方程。
設u(x,y)、v(x,y)在閉區(qū)域D上都具有二階連續(xù)偏導數,分段光滑的曲線L為D的正向邊界曲線,證明:,其中分別是u、v沿L的外法線向量n的方向導數,符號稱為二維拉普拉斯算子。
求均勻曲面z=的質心的坐標。
設在半平面x>0內有力F=構成力場,其中k為常數,ρ=,證明在此力場中場力所作的功與所取的路徑無關。
證明在整個xOy平面除去y的負半軸及原點的區(qū)域G內是某個二元函數的全微分,并求出一個這樣的二元函數。
證明直線與直線平行。
最新試題
如果函數f(x)與g(x)對區(qū)間上每一點都有f'(x)=g'(x),則在區(qū)間上必有()
已知數列{an}的通項公式為an=3n+2n+2n-1,則前5項和為()。
,則常數a=()
函數y=x3-6x+2拐點的坐標是()。
函數y=x5-x的拐點為()。
函數有多少個第一類間斷點()
設f(x)=sin(2x2-4)則f′(x)為()。
dx=()
函數f(x)=+2的定義域是()
(xsinx+xcosx)dx=()