單項選擇題
曲線y=x3(x-4)既單增又向上凹的區(qū)間為()
A.(-∞,0) B.(0,+∞) C.(2,+∞) D.(3,+∞)
已知函數(shù)f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,則該函數(shù)在[-2,2]上的最小值是()
A.3 B.-5 C.-40 D.-37
A.10arctan2-31n2 B.(5/2)π-3 C.10arctan3-3ln3 D.10arctan(1/3)
點(0,1)是曲線y=ax3+bx+c的拐點,則a、b、c的值分別為()
A.a=1,b=-3,c=-2 B.a≠0的實數(shù),b為任意實數(shù),c=1 C.a=1,b=0,c=2 D.a=0、b為任意實數(shù),c=1
過點M0(-1,1)且與曲線2ex-2cosy-1=0上點(0,π/3)的切線相垂直的直線方程是:()
A.y-π/3=(/2)x B.y-π/3=-(2/)x C.y-1=(/2)(x+1) D.y-1=-(2/)(x+1)
已知由方程siny+xey=0,確定y是x的函數(shù),則dy/dx的值是:()
A.-(ey+cosy)/xey B.-ey/cosy C.-ey/(cosy+xey) D.-cosy/xey
設(shè)參數(shù)方程,確定了y是x的函數(shù),f″(t)存在且不為零,則d2y/d2x的值是:()
A.-1/f″(t) B.1/[f″(t)]2 C.-1/[f″(t)]2 D.1/f″(t)
(x+ex)的值是:()
A.e B.e C.1 D.2
設(shè)參數(shù)方程,確定了y是x的函數(shù),且f′(t)存在,f(0)=2,f′(0)=2,則當(dāng)t=0時,dy/dx的值等于:()
A.4/3 B.-4/3 C.-2 D.2
設(shè)y=(1+x),則y′(1)等于:()
A.2 B.e C.1/2-ln2 D.1-ln4
已知,則dy/dx為:()
A.(t2-1)/2t B.(1-t2)/2t C.(x2-1)/2x D.2t/(t2-1)