您可能感興趣的試卷
最新試題
甲乙兩人五門課程的測驗成績(每門課程滿分均為100分)為又經(jīng)統(tǒng)計,該年級五門課程這次測驗的平均分?jǐn)?shù)分別為70分、85分、65分、75分、68分,標(biāo)準(zhǔn)差分別為9分、6分、11分、8分、10分,試運(yùn)用標(biāo)準(zhǔn)分?jǐn)?shù)來比較甲乙這次測驗總分的前后順序。
某車間有200臺機(jī)床獨(dú)立工作,每臺機(jī)床在工作時間內(nèi)有70%的時間開動,每臺機(jī)床工作時需耗電1kw,問應(yīng)供應(yīng)多少電力才能有99.9%的把握保證該車間正常生產(chǎn)。
求下列矩陣的秩:
根據(jù)長期資料的分析,知道某種鋼筋的強(qiáng)度服從正態(tài)分布,今隨機(jī)抽取6根鋼筋進(jìn)行強(qiáng)度試驗,測得強(qiáng)度(單位Mpa)為48.5,49,53.5,49.5,56.0,52.5。問:能否認(rèn)為該種鋼筋的平均強(qiáng)度為52.0Mpa?(α=0.052)
某機(jī)構(gòu)調(diào)查吸煙者月均抽煙支出,假定支出近似服從正態(tài)分布,現(xiàn)隨機(jī)抽取26人,支出均值為80元,標(biāo)準(zhǔn)差為20元,試估計全部吸煙者抽煙月均支出的0.95置信區(qū)間。
求矩陣的逆矩陣:。
設(shè)燈泡使用時數(shù)X~N(μ,σ2),為了估計期望μ和方差σ2,共測試了10個燈泡,求得x=1500h,s=20h,求μ和σ置信度為0.95的置信區(qū)間。
某中學(xué)的初一年級有500名學(xué)生,他們的某種能力指標(biāo)可以用正態(tài)分布來描述,現(xiàn)在按能力將他們分成A,B,C,D四個組參加一項測試,求各組的人數(shù)。
為確保設(shè)備正常運(yùn)轉(zhuǎn),需要配備適當(dāng)數(shù)量的維修工人,現(xiàn)有同類型設(shè)備100臺,各臺工作相互獨(dú)立,每臺發(fā)生故障的概率都是0.01,在正常情況下,一臺設(shè)備出故障時一人即能處理,問至少應(yīng)有幾名維修工人,才能以99%的把握保證設(shè)備出故障時不致因維修工人不足不能及時處理故障而影響生產(chǎn)?
樣本值:99.3,98.7,100.05,101.2,98.3,99.7,99.5,102.1,100.5,分別計算樣本平均值和樣本方差。