給出計算下列連分式的迭代計算公式:
討論迭代過程的收斂性并證明精確的真根為(提示:尋找到迭代不動點格式x=ϕ(x),利用迭代的局部收斂性定理證明)
您可能感興趣的試卷
你可能感興趣的試題
最新試題
寫出求解常微分方程初值問題,y(0)=1,0≤x≤1的Euler格式和改進Euler格式;取步長h=0.02,計算到x=0.1,其精確解析為y(x)=(1+2*x)-0.45,試與精確值比較。
寫出求解常微分方程初值問題,y(0)=1,0≤x≤2的經(jīng)典四階Runge-Kutta格式;取步長h=0.1,手工計算到x=0.2,精確解為y=x+e-x。
常微分方程y″+16*y′+15*y=sin(2t+1),y(0)=α,y′(0)=β為()方程組。
試以Aitken加速冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
常微分方程y″+3*y′+2*y=sinx,y(0)=α,y′(0)=β為()方程組。
寫出求解常微分方程初值問題,y(0)=1,0≤x≤0.5,首先利用經(jīng)典四階Runge-Kutta格式,計算出3個啟動值:y(0.1)=0.833;y(0.2)=0.723;y(0.3)=0.660;再應(yīng)用四步四階Adams格式取步長h=0.1,手工計算到x=0.5
試以冪法迭代求出如下矩陣的主特征值(模最大的特征值)λ1和相應(yīng)的特征向量:;取初始向量。
試以反冪法迭代求出如下矩陣的反主特征值(模最小的特征值)λ3和相應(yīng)的特征向量:;取初始向量。
寫出求解常微分方程初值問題,y(1)=2,1≤x≤2的梯形格式;取步長h=0.2,手工計算到x=1.2。
寫出求解常微分方程初值問題,y(0)=0,0≤x≤4的Euler格式;取步長h=0.1,手工計算到x=0.1,精確解為。