已知向量a,b,滿足|a|=|b|=1,且,其中k>0。
(1)試用k表示a·b,并求出a·b的最大值及此時a與b的夾角θ的值;
(2)當(dāng)a·b取得最大值時,求實數(shù)λ,使|a+λb|的值最小,并對這一結(jié)論作出幾何解釋。
您可能感興趣的試卷
最新試題
設(shè)f(x),g(x)在[0,1]上的導(dǎo)數(shù)連續(xù),且f(0)=0,f′(x)≥0,g′(x)≥0。證明:對任何a∈[O,1],有
設(shè)f(x),g(x)在[a,b]上連續(xù),且滿足
設(shè)二次函數(shù)f(x)=ax2+bx+c(a>O),方程f(x)-x=O的兩個根x1,x2滿足。(1)當(dāng)x∈(0,x1)時,證明x;(2)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明。
已知橢圓C1、拋物線C2的焦點均在x軸上,C1的中心和C2的頂點均為原點D,從每條曲線上取兩個點,將其坐標記錄于下表中:(1)求C1、C2的標準方程:(2)請問是否存在直線L滿足條件:①過C2的焦點F;②與C1交不同兩點M、N,且滿足若存在,求出直線L的方程;若不存在,說明理由。
論述實施合作學(xué)習(xí)應(yīng)注意的幾個問題。
求.
在平面直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系。已知點A的極坐標為,直線l的極坐標方程為,且點A在直線l上。(1)求α的值及直線ι的直角坐標方程:(2)圓c的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系。
案例:某教師在對根與系數(shù)關(guān)系綜合運用教學(xué)時,給學(xué)生出了如下一道練習(xí)題:設(shè)α、β是方程x2-2kx+k+6=0的兩個實根,則(α-1)2+(β-1)2的最小值是()。A.B.8C.18D.不存在某學(xué)生的解答過程如下:利用一元二次方程根與系數(shù)的關(guān)系易得:α+β=2k,αβ=k+6所以。故選A。問題:(1)指出該生解題過程中的錯誤,分析其錯誤原因;(2)給出你的正確解答;(3)指出你在解題時運用的數(shù)學(xué)思想方法。
一商家銷售某種商品的價格滿足關(guān)系P=7-0.2x(萬元/噸),其中x為銷售量,該商品的成本函數(shù)為C=3x+1(萬元)。(1)若每銷售一噸商品,政府要征稅t萬元,求該商家獲最大利潤時的銷售量;(2)t為何值時,政府稅收總額最大?
,(1)求An;(2)求(A+2E)n。