您可能感興趣的試卷
最新試題
0.02 kg的氦氣(視為理想氣體),溫度由17℃升為27℃.若在升溫過程中,(1) 體積保持不變;(2) 壓強保持不變;(3) 不與外界交換熱量;試分別求出氣體內(nèi)能的改變、吸收的熱量、外界對氣體所作的功. (普適氣體常量R =8.31J.mol-1.K-1)
1 mol雙原子分子理想氣體從狀態(tài)A(p1,V1)沿p-V圖所示直線變化到狀態(tài)B(p2,V2),試求: (1) 氣體的內(nèi)能增量. (2) 氣體對外界所作的功. (3) 氣體吸收的熱量. (4) 此過程的摩爾熱容. (摩爾熱容C =△Q/△T,其中△Q表示1mol物質(zhì)在過程中升高溫度△T時所吸收的熱量.)
為了使剛性雙原子分子理想氣體在等壓膨脹過程中對外作功2J,必須傳給氣體多少熱量?
一卡諾熱機(可逆的),當(dāng)高溫?zé)嵩吹臏囟葹?27℃、低溫?zé)嵩礈囟葹?7℃時,其每次循環(huán)對外作凈功8000 J.今維持低溫?zé)嵩吹臏囟炔蛔儯岣吒邷責(zé)嵩礈囟?,使其每次循環(huán)對外作凈功 10000 J.若兩個卡諾循環(huán)都工作在相同的兩條絕熱線之間,試求: (1) 第二個循環(huán)的熱機效率; (2) 第二個循環(huán)的高溫?zé)嵩吹臏囟龋?/p>
有1mol剛性多原子分子的理想氣體,原來的壓強為1.0atm,溫度為27℃,若經(jīng)過一絕熱過程,使其壓強增加到16atm.試求: (1) 氣體內(nèi)能的增量; (2) 在該過程中氣體所作的功; (3) 終態(tài)時,氣體的分子數(shù)密度. ( 1atm= 1.013×105Pa,玻爾茲曼常量k=1.38×10-23J·K-1,普適氣體常量R=8.31J·mol-1·K-1)
將1mol理想氣體等壓加熱,使其溫度升高72K,傳給它的熱量等于1.60×103J,求:(1)氣體所作的功W;(2)氣體內(nèi)能的增量△E;(3)比熱容比。(普適氣體常量R=8.31J.mol-1.K-1)
一定量的理想氣體,從A態(tài)出發(fā),經(jīng)p-V圖中所示的過程到達B態(tài),試求在這過程中,該氣體吸收的熱量.
1mol的理想氣體,完成了由兩個等體過程和兩個等壓過程構(gòu)成的循環(huán)過程(如圖),已知狀態(tài)1的溫度為T1,狀態(tài)3的溫度為T3,且狀態(tài)2和4在同一條等溫線上.試求氣體在這一循環(huán)過程中作的功.
分析蒸汽參數(shù)變化對蒸汽動力循環(huán)熱效率的影響?
一定量的理想氣體,由狀態(tài)a經(jīng)b到達c.(如圖,abc為一直線)求此過程中(1) 氣體對外作的功; (2) 氣體內(nèi)能的增量; (3) 氣體吸收的熱量.(1atm=1.013×105Pa)